

6829 TWIN TRIODE

Five-Star Tube ****

FOR COMPUTER APPLICATIONS

Page 1

6829GEBB

HIGH PERVEANCE SHARP CUTOFF MEDIUM MU

SHOCK, VIBRATION RATINGS HEATER-CYCLING RATING PROTOTYPE---5965

DESCRIPTION AND RATING

The 6829 is a miniature, medium-mu twin triode designed especially for service in computer applications. The electrical characteristics of the 6829 are equivalent to those of the 5965; and, like the 5965, the tube features a high zero-bias plate current together with a sharp cutoff characteristic.

Intended for use in critical industrial and military applications in which operational dependability is of primary importance, the 6829 exhibits a high degree of mechanical strength and incorporates a heater-cathode construction capable of withstanding many-thousand cycles of intermittent operation. When used in on-off control applications, the tube will maintain its emission capabilities after long periods of operation under cutoff conditions.

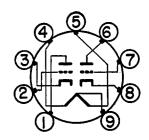
GENERAL

ELECTRICAL

Cathode—Coated Unipotential	Series	Parallel	
Heater Voltage, AC or DC	$12.6 \pm 5\%$	$6.3 \pm 5\%$	Volts
Heater Current	0.225	0.45	Amperes
Direct Interelectrode Capacitances*			•
Grid to Plate, Each Section		3.0	$\mu\mu$ f
Input, Each Section		4.0	$\mu\mu$ f
Output, Section 1		0.5	$\mu\mu f$
Output, Section 2		0.38	μμf
Heater to Cathode, Each Section		4.0	$\mu\mu$ f
Grid to Grid, maximum		0.03	$\mu\mu$ f
Plate to Plate, maximum		0.9	μμf
* Without external shield.			

MECHANICAL

Mounting Position


Preferred Orientation—Upright or with Plate Majors in Vertical Position Permissible Orientation—Any

Envelope—T-61/2, Glass

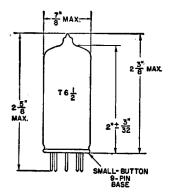
Base-E9-1, Small Button 9-Pin

GENERAL (S) ELECTRIC

BASING DIAGRAM

RETMA 9A

TERMINAL CONNECTIONS


Pin 1—Plate (Section 2) Pin 2—Grid (Section 2) Pin 3—Cathode (Section 2) Pin 4—Heater

Pin 5—Heater

Pin 6—Plate (Section 1)
Pin 7—Grid (Section 1)
Pin 8—Cathode (Section 1)

Pin 9—Heater Center Tap

PHYSICAL DIMENSIONS

RETMA 6-3

MAXIMUM RATINGS

DESIGN-MAXIMUM VALUES, EACH SECTION†

DC Plate Voltage	Volts
	Volts
	Volts
	Volts
	Volts
	Voits
Plate Dissipation, Each Plate	Watts
Total Plate Dissipation, Both Plates	Watts
	Milliamperes
Peak Grid Current‡50	Milliamperes
	Milliamperes
Peak Cathode Current‡	Milliamperes
Heater-Cathode Voltage	
Heater Positive with Respect to Cathode§100	Volts
Heater Negative with Respect to Cathode§100	Volts
Grid Circuit Resistance	
With Fixed Bias	Megohms
With Cathode Bias	Megohms
Bulb Temperature at Hottest Point	

- † Design-Maximum Ratings are the limiting values expressed with respect to bogie tubes at which satisfactory tube life can be expected to occur for the types of service for which the tube is rated. Therefore, the equipment designer must establish the circuit design so that initially and throughout equipment life no design-maximum value is exceeded with a bogie tube under the worst probable operating conditions with respect to supply-voltage variation, equipment component variation, equipment control adjustment, load variation, and environmental conditions.
- ‡ Rating based on a pulse of 10 microsecond duration, 1 percent duty cycle, and 1000 pps repetition rate.
- § For pulse voltages of less than 1 percent duty cycle, the peak voltage may be 150 volts maximum.

CHARACTERISTICS AND TYPICAL OPERATION

AVERAGE CHARACTERISTICS, EACH SECTION

Plate Voltage	100	1 <i>5</i> 0	150	Volts
Grid Voltage	π	-4.8		Volts
Cathode-Bias Resistor			220	Ohms
Amplification Factor			47	
Plate Resistance, approximate			7000	Ohms
Transconductance			6700	Micromhos
Plate Current	17	0.15	8.5	Milliamperes

 $[\]pi$ With grid current adjusted for approximately 200 microamperes.

CHARACTERISTICS LIMITS

	Minimum	Maximu	m
Heater Current			
Ef = 6.3 volts	420	480	Milliamperes
500-Hr	420	485	Milliamperes
1000-Hr	420	490	Milliamperes
Zero-Bias Plate Current (1), Each Section			
Ef = 6.3 volts, Eb = 100 volts, Ic = 200 μ a (Rg = 0.5 meg to +100 volts). Initial	12.0	22.0	Milliamperes
Zero-Bias Plate Current Change with Heater Voltage, Each Section			
Difference between Zero-Bias Plate Current (1) and Zero-Bias Plate			
Current at $Ef = 5.7$ volts (other conditions the same) expressed as a			
percentage of Zero-Bias Plate Current (1)		15	Percent
500-Hr		15	Percent
Zero-Bias Plate Current Change with Operation, Each Section			
Difference between Zero-Bias Plate Current (1) initially and after opera-			
tion expressed as a percentage of initial value500-Hr		20	Percent
1000-Hr		25	Percent
Plate Current, Each Section			
Ef = 6.3 volts, Eb = 150 volts, Rk = 220 ohms (bypassed) Initial	6.3	10 <i>.</i> 7	Milliamperes
Transconductance, Each Section			
Ef = 6.3 volts, Eb = 150 volts, Rk = 220 ohms (bypassed) Initial	5300	8100	Micromhos
Amplification Factor, Each Section			
Ef = 6.3 volts, Eb = 150 volts, Rk = 220 ohms (bypassed) Initial	39	55	
Grid Voltage Cutoff (1), Each Section	_,		
Ef = 6.3 volts, Eb = 150 volts, Ib = 150 μ a		-7. 5	Volts
	• • • •	7.0	V 0113
Grid Voltage Cutoff Difference between Sections			
Difference between cutoff voltages for each section at Ef = 6.3 volts,		1.5	Valte
Eb = 150 volts, lb = 150 μ a	• • • •	1.5	Volts
Interelectrode Capacitances			
Grid to Plate (g to p), Each Section	2.4	3.6	μμξ
Input (g to k+h), Each Section	3.0	5.0	μμf
Output (p to k+h), Section 1	0.37	0.57	μμf
Output (p to k+h), Section 2	0.30	0.46	μμf
Heater to Cathode (h to k), Each Section	3.0	5.0	μμ f
Grid to Grid (g to g)	• • • •	0.03	μμ f
Plate to Plate (p to p)	• • • •	0.9	μμf
Measured without external shield			
Negative Grid Current, Each Section	_		
Ef = 6.3 volts, Eb = 150 volts, $Rk = 220$ ohms (bypassed), $Rg = 0.5$ megInitial	0	0.3	Microamperes
500-Hr	.0	0.3	Microamperes
1000-Hr	0	0.3	Microamperes
Heater-Cathode Leakage Current, Each Section			
Ef = 6.3 volts, Ehk = 100 volts		_	
Heater Positive with Respect to Cathode		7	Microamperes
500 Hr	• • • •	7	Microamperes
1000-Hr	• • • •	7	Microamperes
Heater Negative with Respect to Cathode		7	Microamperes
500-Hr	• • • •	7	Microamperes
1000-Hr	• • • •	7	Microamperes
CHARACTERISTICS LIMITS CONTINUED ON PAGE 4			

CHARACTERISTICS LIMITS CONTINUED ON PAGE 4

CHARACTERISTICS LIMITS (Cont'd)

Interelectrode Leakage Resistance

Ef = 6.3 volts, Polarity of applied d-c interelectrode voltage is such that

no cathode emission results.			
Grid (Each Section) to All at 100 volts d-c	100		Megohms
500-Hr	5 0		Megohms
Plate (Each Section) to All at 300 volts d-c	100		Megohms
500-Hr	50	• • • •	Megohms
Vibrational Noise Output Voltage, RMS, Each Section			-
Ef = 6.3 volts, Ebb = 150 volts, $Rk = 220$ ohms (bypassed), $R_L = 2000$ ohms,			
Vibrational acceleration = 2.5 G at 25 cps		300	Millivolts
Grid Emission Current, Each Section			
Ef = 6.7 volts, Eb = 150 volts, Ecc = -30 volts, Rg = 0.5 meg Initial	0	0.5	Microamperes
Pulse Cathode Current			•
Ef = 6.3 volts, Eb = 150 volts, Ecc = -20 volts. Grid is driven 10 volts			
positive with a pulse of 1% duty cycle and 1000 pps repetition rate.			
Pulse cathode current is measured for each section with both sections			
operating under pulse conditions	160		Milliamperes
500-Hrφ	150		Milliamperes

Unless otherwise specified, the indicated 500-hour and 1000-hour values are life-test end points for the following conditions of operation for each section: Ef = 6.3 volts, Ebb = 180 volts, R_L = 3900 ohms, I_C = 46 μ a (I_C = 3.9 meg to 180 volts), Ehk = 135 volts with heater positive with respect to cathode, and bulb temperature = 140 C minimum.

 ϕ Conditions of life-test operation for each section are Ef = 6.3 volts, Ebb = 180 volts, Ecc = -20 volts, R_L = 200 ohms, and Rg = 50 ohms. Grid is driven with a 11.5-volt positive-going pulse (measured on driver side of Rg) of 1% duty cycle and 1000 pps repetition rate.

SPECIAL TESTS AND RATINGS

Stability Life Test

Statistical sample operated for one hour to evaluate and control initial variations in zero-bias plate current.

Survival Rate Life Test

Statistical sample operated for one hundred hours to evaluate and control early-life electrical and mechanical inoperatives.

Heater-Cycling Life Test

Statistical sample operated for 2000 cycles to evaluate and control heater-cathode defects. Conditions of test include Ef = 7.5 volts (parallel-heater connection) cycled for one minute on and one minute off, Eb = Ec = 0 volts, and Ehk = 135 volts with heater positive with respect to cathode.

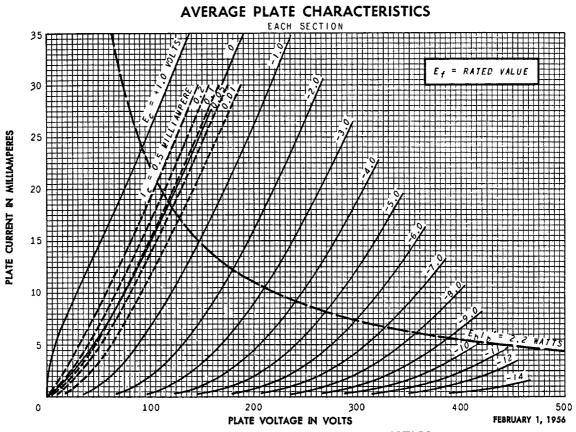
Shock Rating—450 G

Statistical sample subjected to five impact accelerations of 450 G in each of four different positions. The accelerating forces are applied by the Navy-type, High Impact (flyweight) Shock Machine for Electronic Devices or its equivalent.

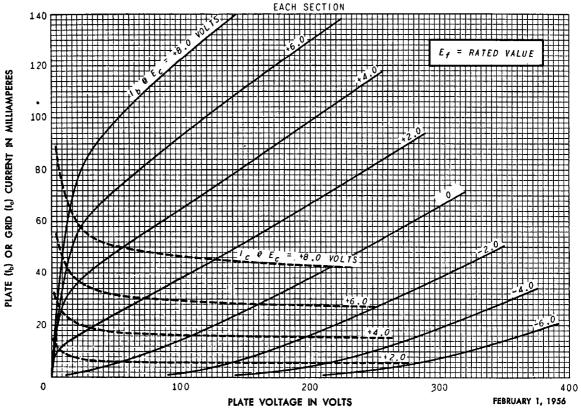
Fatigue Rating—2.5 G

Statistical sample subjected to vibrational acceleration of 2.5 G for 32 hours minimum in each of three different positions. The sinusoidal vibration is applied at a fixed frequency between 25 and 60 cycles per second.

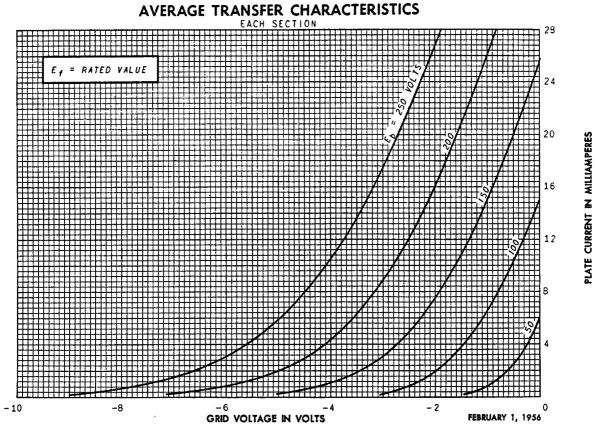
Cathode-Interface Impedance Life Test

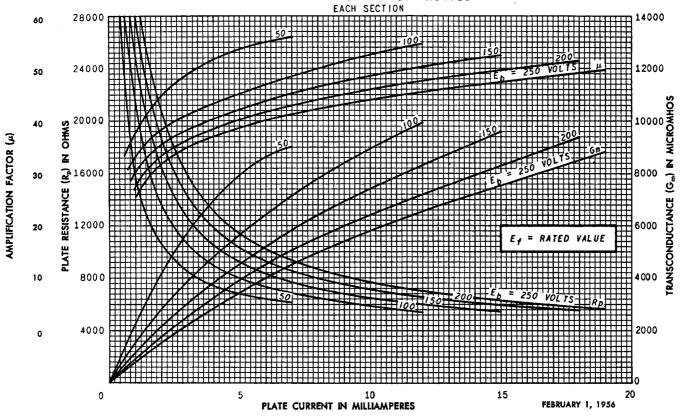

Statistical sample operated without cathode current conduction to evaluate and control the development of cathode interface impedance.

Altitude Rating-60,000 Feet


Statistical sample subjected to pressure of 55 millimeters of mercury to evaluate and control arcing and corona.

Note: The conditions for some of the indicated tests have deliberately been selected to aggravate tube failures for test and evaluation purposes. In no sense should these conditions be interpreted as suitable circuit operating conditions. In the design of military equipment employing this tube, reference should be made to the appropriate MIL-E-1 specification.


△Supersedes page 4, dated 1-56


AVERAGE PLATE CHARACTERISTICS

AVERAGE CHARACTERISTICS

TUBE DEPARTMENT

Schenectady 5, N. Y.